Cardiac CT for Transcather Aortic Valve Implantation

Won-Jang Kim, MD, PhD

Structural and Valvular Intervention Sejong Cardiovascular Center, SGH

For the TAVI,

A unique collaborative experience !

Current Active Devices

Medtronic CoreValve Self Expanding

Major Uses of CT in TAVI

Evaluation of Access Routes

Reduce Vascular Injury

Femoral Artery Puncture under Fluoroscopic Guidance

Calcif. incluc 9.1 mm (2D)-----7.4 mm (2D) 7.3 mm (2D)---

Ex:Jun 09 20

Made by Adw 4.5, GE healthcare system

Multivariate Predictors of Major Vascular Complications

Sheath to femoral artery ratio (SFAR)* HR: 186.20
Center experiences, HR: 3.66
Femoral calcification, HR: 3.44

*SFAR ; the ratio of sheath OD (mm) and minimal femoral artery diameter (mm), measured usually by CTA

Hayashida K, Lefevre T, Chevalier B et al.JACC Intv 2011;4;851-58

SFAR threshold Predicting Major Vascular Complications

SFAR threshold of 1.05 (AUC 0.723)

Variables	SFAR <u>≥</u> 1.05	SFAR <1.05	P Value
VARC Major	30.9	6.9	0.001
lliac artery complication	20.0	2.8	0.002
Femoral artery complication	27.3	12.5	0.035
30-day mortality	18.2	4.2	0.016

Hayashida K, Lefevre T, Chevalier B et al. JACC Intv 2011;4;851-58

Baseline Angiography & CT

Made by Adw 4.5, GE healthcare system

Difficulty in Advancement Severe calcific small vessel

Ileofemoral Artery Evaluation

Ileofemoral Artery Evaluation

Size Measure, Calcium distribution, Tortuosity,,,

SIH <u>Mate</u>

CT Screening Can Help Reduce Vascular Injury Rates

Variables	2009	2010	P value
MDCT Screening	44%	69%	<0.01
Ultrasound-guided puncture	0	37%	<0.01
Sheath size >19F	40%	2%	<0.01
Expandable sheath	12%	18%	0.33
MLD < external sheath diameter	77%	30%	<0.01
All vascular complications	32%	9%	<0.01

Toggweiler et al. JACC 2012

Annulus sizing

Cannot be emphasized enough...

For successful procedure & reduce complications

Aortic Annulus: Difficult to understand

PPM or Rupture vs. PVL

Adapted from Thierry Lefevre; London Valves, 2012

Aortic Annulus on CT

Circular Annulus is Very Small Proportion

Distribution of D_{max}/D_{min} from 164 TAVI patients Courtesy of Dr. Piazza and Prof. Lange, German Heart Center, Munich Germany

A Limitation of 2-D Image

It is possible a true diameter is not measured due to the imaging plane acquired

Piazza N, et al. Circ Cardiovasc Intervent. 2008;1:74.

Aortic Annulus on MSCT

New CT Parameters

Reliability Comparison TEE vs. CT Variables (N=30, Preliminary AMC Data)

CT measurements for annulus are usually larger than TEE measurements. CT perimeter & area measurements are most reproducible.

by ICC (1)						
(2)	0.51	0.93	0.95	0.96	0.93	0.95
	(0.40-0.62)	(0.84-0.97)	(0.88-0.97)	(0.89-0.99)	(0.83-0.96)	(0.86-0.98)

ICC ; Intraclass correlation coefficient

CT Measures Can Predict PVL

- Valve stent diameter Mean annular diameter_{CT} = AUC 0.84
- Valve stent diameter Area-derived annular diameter_{CT} = AUC 0.86
- Valve stent area/ Annular area_{CT} = AUC 0.87

Willson et al. JACC 2012

CT Annular Measures Appear more Predictive than 3-D Echo for PVL

- CT Dmean Annulus AUC = 0.82
- 3D TEE Mean Annulus AUC = 0.68

$$2D TEE AUC = 0.52$$

Jilaihawi et al. JACC 2013

CT vs. Echo in Sizing: Edwards

Patients with symptomatic severe aortic stenosis at high or prohibitive surgical risk

- University of British Columbia (SPH & VGH)

- Laval University

- Aarhus University

TAVR with the MDCT sizing algorithm

133 consecutive patients in 2012

TAVR without the MDCT sizing algorithm 133 consecutive patients in 2011

MDCT algorithm followed

- 69 University of British
Columbia (SPH & VGH)
- 23 Laval University
- 15 Aarhus University

MDCT algorithm not followed

- 14 University of British
Columbia (SPH & VGH)
- 5 Laval University
- 7 Aarhus University

No MDCT algorithm

- 83 University of British
Columbia (SPH & VGH)
- 28 Laval University
- 22 Aarhus University

Binder et al JACC 2013

PVL (>mild) : CT (7%) vs Echo (17%) p=0.032 PVL, Severe : CT (0%) vs Echo (6%) p=0.013

Stretching Index

Device Perimeter (Calculated)

Measured CT Perimeter

Asian CoreValve Registry, in submitting

Stretching Index Examples

= 1.07

= 1.15

Avg. Diameter 26 mm (81.6 mm)

Avg. Diameter 19.6 mm (62.8 mm)

Stretching Index vs. PPM

1.27

1.34

18

16

Best Combination for Prevention of Permanent Pacemaker

Stretching Index

Logistic regression p<0.0001, AUC 0.97, 95% CI=0.94-0.99

Predictors of aortic root rupture

	Univariate		Multivariable		
	Odds Ratio (95%CI)	P value	Odds Ratio (95%CI)	P value	
LVOT calcifications moderate/severe	6.03 (2.35-15.45)	<0.001	12.45 (2.97-52.15)	0.001	
Prosthesis oversizing ≥ 20%	8.76 (3.19-24.09)	<0.001	23.17 (4.77- 45.71)	<0.001	
Balloon post-dilation	9.00 (2.59-22.08)	0.001	10.40 (1.54-30.46)	0.016	
Adjusted for gender, MDCT annular area, MDCT LVOT area, presence of MDCT LVOT moderate to severe					

≥20%, MDCT SV maximal diameter, and balloon post-dilation.

Annular Sizing for TAVR

Measurement of Annulus Dimensions

CT Sizing for CoreValve

Valve Size	Diameter	Perimeter	Cover Index
31mm	29mm	91.1	6.45%
31mm	28mm	88	10.30%
31mm	27mm	84.8	12.90%
31mm	26mm	81.7	16.13%
29mm	27mm	84.8	6.90%
29mm	26mm	81.7	10.30%
29mm	25mm	78.5	13.80%
29mm	24mm	75.4	17.20%
26mm	23mm	72.3	11.50%
26mm	22mm	69.1	15.40%
26mm	21mm	66	19.20%
26mm	20mm	62.8	23.10%

CT Sizing for Edwards Valve

Annular Area (mm²)	Edwards valve size (mm)
230 - 300	20
310 - 320	20 or 23
330 - 400	23
410	23 or 26
420 - 510	26
520	26 or 29
530 - 660	29

We need Additional Measurements

Kasel et al. JACC Imaging 2013

Impact of Underfilling on Expansion In Vitro

	Balloon	1 ml	2 ml	3 ml	4 ml
	volume	underfilled	underfilled	underfilled	underfilled
Novaflex					
20-mm THV	11 ml	-9.1%	-18.2%*	-27.3%*	-36.4%*
23-mm THV	17 ml	-5.9%	-11.8%	-17.6%*	-23.5%*
26-mm THV	22 ml	-4.5%	-9.0%	-13.6%	-18.2%*
29-mm THV	33 ml	-3.0%	-6.1%	-9.1%	-12.1%
Ascendra					
23-mm THV	16 ml	-6.3%	-12.5%	-18.8%*	-25.0%*
26-mm THV	20 ml	-5.0%	-10.0%	-15.0%	-20.0%*
29-mm THV	30 ml	-3.3%	-6.7%	-10.0%	-13.3%

Anatomic Implications for TAVI Imaging

- The aortic annulus is clearly a complex structure and requires imaging that can take into account its elliptical and irregular shape
- Single diameter sizing methods can provide misleading results
- 3D imaging can provide a more accurate representation of the aortic annulus

Aortic Root Anatomy and Distances

	Width	Height	For annulus diameter	Height of skirt
Edward SAPIEN XT™	23mm	14.3mm	18-22mm	10.1/7.74mm
	26mm	17.2mm	21-25mm	11.4/8.67mm
CoreValve Revalving [™]	26mm	53mm	20-23mm	12mm
	29mm	55mm	23-27mm	12mm

Left main height

- Measure during diastole
 and systole
- Curved MPR or max oblique coronal view

Potential Mechanisms of Coronary Ostial Obstruction

- 1. Impingement of ostia by THV support structure
- 2. High positioning of sealing cuff
- **3. Embolization** of atheroma, calcium, thrombus, air or vegetation
- 4. Oversizing of THV
- 5. Dissection of aortic root
- 6. Displacement of native aortic leaflets towards coronary ostia

Recommended annulus to ostial height: > 10 mm for Sapien 23 and > 11 mm for Sapien 26

Coronary Height

Navigator For Transapical Approach

Direction of Puncture or Wire

Made by Adw 4.5, GE healthcare system

Aortic Valve Morphology & Amount of Calcium

Scanty calcium

Heavy eccentric calcium

Echocardiographic findings

Calcificated structure is enemy of Echo

TEE

TTE

Amount of Cuspid Calcification

Scanty of Calcium

Heavy Eccentric Calcium

Heavy Eccentric Calcium

Heavy Eccentric Calcium

OH, JEONGLYE, 578 Asan Medical Center S 45832224 Ref:CV, D890004 Age:78 years СТ Vascular 005 Valve DS ChestECG 22 Jul 2013 DS ChestPain 0.6 B26f 0-90% 09:17:14 R 4 cm B kVP:120 Vitrea® mA:799 Zoom:233% msec:285 Phase %060 mAs:226 Batch #1 Krn: B26f W/L:1000/200 23 mm Edward Valve Thk:0.6 mm Oblique SOMATOM Definition Flash 7 of 10 at 0.1 sec

Heavy Eccentric Calcium: Extent

Made by Adw 4.5, GE healthcare system

Valve positioning

Aortic Valve Plane by CT Scan

CT vs 3-D Angio CT for Angle Prediction

Binder et al. TCT 2011, Circ Interventions April 2012

Valve Placement

Assisting with Valve Positioning

DynaCT Image Acquisition with rapid pacing

Courtesy Siemens Systems

Merged Imaging Tools

Philips Heart Navigator

Valve deployment under DynaCT

Edwards SAPIEN

CoreValve

Courtesy by Alois Nöttling Siemens Courtesy by Brockmann German Heart Center Munich

Follow up evaluation

Examples of Conformability CoreValve Cases

Follow Up Image

No Valve Migration, Fracture, Circumferentiality

Deep Implantation, but No PPM No contact in Node

Roles of CT in TAVI

- Ileofemoral Arterial Sytem : Size, Calcification, Tortuosity, Plaques
- 3D annular & root morphology & dimensions
- Amounts of calcium in valve
- Annular Sizing
- Relationship of annulus to both coronary ostia
- Optimal angle (TF) or puncture site (TA)
- Merging Image during Implantation
- Post TAVI assessment

